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We discuss the diffusive limit of a class of stochastic lattice gases on the cubic latticeZd. If the initial
conditions correspond to a local equilibrium with small deviations from a spatially constant profile, we prove
the law of large numbers for the rescaled empirical velocity field. The limiting field satisfies the Navier-Stokes
equation and the viscosity is characterized by variational formulas, formally equivalent to the Green-Kubo
formula.

PACS number~s!: 05.70.Ln, 02.50.Ey, 05.20.2y, 47.10.1g

A major open problem in nonequilibrium statistical phys-
ics is a derivation of hydrodynamical equations, such as the
Euler or the Navier-Stokes equations, from the microscopic
Hamiltonian dynamics. Formally the Euler equations can be
understood with the simple local equilibrium assumption@1#.
A proof can indeed be achieved by adding some noise to the
Newtonian dynamics@2#, helping to establish the local equi-
librium. For longer time scale, such as the diffusive scale, it
is necessary to compute the transport coefficients which de-
pend on the first order corrections to the local equilibrium.
The corrections can be determined by formal expansions, as
in @3,4#. Unlike the Euler equations, even with the addition
of noise to the Newtonian dynamics, a rigorous treatment of
this formal expansion for general Hamiltonian systems is
beyond the present mathematical technique. A major diffi-
culty is the lack of control on the relaxation rate to equilib-
rium for general Hamiltonian systems, a problem much
harder than proving local equilibrium assumption. Estimates
of this kind are essential for a derivation of the Navier-
Stokes equations.

The only systems that we have sufficient estimates for are
the lattice gas models. In this paper we present a rigorous
derivation of the incompressible Navier-Stokes equation for
stochastic particle systems on the lattice. The transport coef-
ficients, as a byproduct, are characterized via variational for-
mulas, following the approach pioneered by@5# and devel-
oped by, among others@6–9#. These variational formulas are
formally equivalent to the Green-Kubo formula. But unlike
the Green-Kubo formula, the variational formulas are ana-
lytically more tractable and they can be used for numerical
approximations of the transport coefficients. We remark that
the convergence of the Green-Kubo integrals is always very
difficult to obtain while the transport coefficients are auto-
matically finite by the variational formulation.

We now introduce the models. LetLLPZd be the cubic
sublattice$2L, . . . ,L%d with periodic boundary conditions.
We setL5«21. Let ei , i51, . . . ,d be the unit vectors in the
positive coordinate directions andE5$e56ei for some
i51, . . . ,d%. Let V be a finite subset ofRd representing the

possible velocities andN the numbers of elements inV .
Assume thatV is invariant under reflections and permuta-
tions of the coordinate axes. Assume for simplicity that all
velocities have a fixed modulus, say,k. The simplest choice
is to take the velocities along the coordinate directions,
namelyV 5E . We will refer to that case as model I. Since
this model does not provide the correct isotropy property for
the nonlinear term in the Navier-Stokes equation, we intro-
duce also a more complex model~model II! by choosing as
V the set of the vectors with two components61 and a
component6Ã, to be fixed later to get the right hydrody-
namical equations. In model II we haveN524.

On each site of the lattice at most one particle for each
velocity is allowed, so that there are at mostN particles per
site ~exclusion rule only between particles with the same
velocity!. A configuration of particles on the lattice is de-
noted byh5$hx ,xPLL% wherehx5$h(x,v),vPV % and
h(x,v)50,1,xPZd,vPV is the occupation number of par-
ticles at x with velocity v. The dynamics consists of the
following two parts.

~i! The free motionof the particles with velocityv is
modeled by a simple exclusion process~SEP! with drift v. In
other words, particles with velocityv jump at~independent!
exponential times from a sitex to a neighboring sitex1e,
ePE , with intensityp(x,x1e,v) provided that there is no
particle with velocityv at x1e. The intensity is chosen so
that the drift(ePEep(0,e,v)5v. This is the way we associ-
ate a notion of velocity to particles on the lattice and one can
obtain any velocityv by choosing the jump rate correctly
even if the underlying lattice is the standard square lattice.
We choosep(x,y,v)5@g1(y2x)•v/2#, whereg is a con-
stant large enough so that the jump rates are non-negative.
One can characterize this dynamics formally by the generator

L f reef ~h!5 (
vPV

(
xPZd,ePE

h~x,v !@12h~x1e,v !#

3p~x,x1e,v !@ f ~hx,x1e,v!2 f ~h!#, ~1!
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where hx,y,v is the configuration obtained fromh by ex-
changing the occupation numbers of particles with velocity
v at x andy.

~ii ! The velocity of the particles changes by means of
binary collisions. Bycollisionswe mean all the quadruples
Q5$q5(v,w,v8,w8)PV 4:v1w5v81w8% conserving the
total momentum; herev,w are the incoming velocities and
v8,w8 the outgoing velocities. These binary collisions occur
at a sitey at independent exponential times, provided the
exclusion rule is not violated. Since the moduli of velocities
are fixed, the energy coincides with the mass in our setup
and collisions conserve energy as well. The generator is
given by

Lcf ~h!5 (
yPZd

(
qPQ

C~y,q•h!@ f ~hy,q!2 f ~h!#, ~2!

where C(y,q•h)51 if h(y,v)5h(y,w)51 and
h(y,v8)5h(y,w8)50, andC(y,q•h)50 otherwise. Note
that C(y,q•h)50 when in the configurationh there is no
particle with velocityv orw at y or there is already a particle
with velocity v8 or w8 at y. The configurationhy,q is con-
structed by settinghy,q(y,v)5hy,q(y,w)50, hy,q(y,v8)
5hy,q(y,w8)51, andhy,q(z,u)5h(z,u) if zÞy or uP” q.
Note that the only possible collisions in model I are those
q5(v,w,v8,w8) such that v1w50 and v81w850
~head-on collisions!.

The generator of the full dynamics is defined by

L f5L f reef1Lcf . ~3!

There ared11 conserved quantities for this dynamics,
namely, the total mass and the total momentum. Define the
local mass and momentum by

I 0~hx!5 (
vPV

h~x,v !, I i~hx!5 (
vPV

~v•ei !h~x,v !,

~4!

for i51, . . . ,d. The product Gibbs measure

mL,r ,n5
1

ZL,r ,n
)
xPLL

expH rI 0~hx!1(
i51

d

ni I i~hx!J , ~5!

is invariant forL. It is parametrized by the ‘‘chemical po-
tentials’’ r ,n, rPR and n a d-dimensional vector
(n1 , . . . ,nd), namely the conjugate variables to the mass and
momentum. In~6! thepartition function ZL,r ,n is the normal-
ization factor. Whenn50, we denote the measure bym r and
the corresponding average by^ &. We shall say that a model
has the local ergodic property if and only if all the invariant
measures in a finite cube are of the form~5!. The specific
form of V is needed only in the proof of the local ergodic
property. The rest of our method is valid under quite general
conditions. Like general Hamiltonian systems, our dynamics
is not reversible with respect to the measure~5!, i.e., the
detailed balance condition is not satisfied.

Let f t be the density with respect tom r of the process on
the diffusive time scale. Thenf t satisfies the forward
~Fokker-Planck! equation

]

]t
f t5«22L* f t . ~6!

The factor«22 is due to the diffusive time scaling andL* is
the formal adjoint ofL in L2(m r). We consider the initial
data, f t50 , given by thelocal equilibrium statec0 ,

c05Z«
21expF« (

xPLL
(
i51

d

l i~«x!I i~x!G ~7!

with l i smooth periodic functions. The corresponding den-
sity is ^I 0(hx)&c0

5Nu1O(«2), where u5er /(11er)

5^hx&mr
is a constant. The mean velocity field is

u0
i 5^I i(hx)&c0

}«l i . This special choice corresponds to as-

sume a Mach number of order«, namely we are considering
the incompressible regime~see@10# and@3# for more discus-
sions on this point!.

It is possible to obtain the Navier-Stokes equations by a
formal calculation assuming suitable approximations forf t .
Introduce theempirical velocity fields

n i
«~z,t !5«d21 (

xPLL

d~z2«x!I i„hx~ t !…, ~8!

for i51, . . . ,d andz the macroscopic coordinates, which are
expected to approximate the velocity profile for« small,
namelyn i

«(z,t)'ui(z,t), as«→0. They satisfy the follow-
ing local conservation laws:

]

]t
n i

«~z,t !52(
j51

d

]zjwj
i ~z,t !. ~9!

Here wj
i (z,t)5«d21(xPLL

d(z2«x)wx, j
i . The currents

wx, j
i , i , j51, . . . ,d, are given explicitly by @with

¹ jg(x)[g(x1ej )2g(x)#

wx, j
i 5 (

vPV
~ei•v !wx, j~v !

5g¹ j I i1 (
vPV

~ei•v !~ej•v !bx, j~v !,

bx, j~v !5h~x1ej ,v !h~x,v !2
1

2
@h~x1ej ,v !1h~x,v !#.

Strictly speaking, there is a martingale term on the right-
hand side of~9!, vanishing in the limit discussed here.

To the first approximation, one can assume that the non-
equilibrium densityf t is a local equilibrium state similar to
~7!. This is not sufficient to obtain the Navier-Stokes equa-
tion. The correct assumption is that the densityf t can be
approximated~up to order«2) by the density

C t5Zt
21expF« (

xPLL
(
i51

d

l i~«x,t !I i~x!

1«2H (
xPLL

l0~«x,t !I 0~x!1F~h!J G , ~10!
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where F(h)5(xPLL
( i , j] jl iF j

i , for some local function

F j
i . The correct choice ofF j

i will be discussed later on and is
the key step of the rigorous derivation. Suffice to say that
F j
i determines the fluctuations and they appear only in the

transport coefficient. Note that because of theF termC t is
not a product measure.

If we average Eq.~9! versusC t we have the Navier-
Stokes equations below in the limit«→0:

divu50, ~11!

]

]t
ui1

h~u!

At~u! FB]ziui
21C(

j51

d

uj]zjui G
~12!

52]zip1 (
j ,l ,k51

d

D j ,k
i ,l ]zj]zkul ,

whereui5At(u) and the constants are defined as

t~u!5u~12u!, h~u!5
t~u!

2
@126t~u!#,

A5 (
vPV

v1
2 , B5 (

vPV
@v1

423v1
2v2

2#, C52 (
vPV

v1
2v2

2 .

We have, for model I,A52, B52, C50, and for model II,
A58(21Ã2), B5Ã426Ã221, C516(112Ã2). The
anisotropic term,]ziui

2 , disappears by choosingÃ as the

positive root of the equationB5Ã426Ã22150 so that
Eq. ~12! becomes the usual incompressible Navier-Stokes
equation. This fixes the constantÃ. The correctionsF to the
local equilibrium determine the viscosity matrixDj ,k

i ,l . We
summarize the main result proved in@9#.

Theorem.Let d>3 andV as in model I or model II. Then
there is a bounded positive matrixD such that the following
holds. Suppose the incompressible Navier-Stokes equations
~11! and ~12! have a smooth solutionp(x,t),u(x,t) for t
P@0,T# with initial value u0 . Then the empirical fieldn«

converges weakly in probability tou as«→0. Furthermore,
the ansatz~10! holds in the sense that the specific relative
entropys( f tuC t) satisfies

s~ f tuC t![«dE f tln10~ f t /C t!dm r5o~«2!, ~13!

provided that the chemical potential is chosen to give the
correct velocity andF j

i approximate solutions of~14! below.
This is, to our knowledge, the only example of rigorous

derivation of the Navier-Stokes equations from a many-body
system. Our result actually holds in dimensions strictly big-
ger than 2. In fact, note that the rescaled velocity fieldn« is
the local average of velocity blown up by a factor«21. Since
the typical fluctuations of the sum in~8! are of order
«2d/2, it is reasonable to expect a law of large numbers for
n« only for d.2. In dimension 2, one expects logarithmic
corrections to the simple diffusive scaling due to the long
time tails @1,11#.

The main point in the proof is to find the functionsF j
i .

We use the approach of@5–7#. The strategy is to decompose
the currentswj

i into the sum of a gradient term and a term of
the formLg, i.e.,

wj
i2(

k,l
Dj ,k
i ,l ¹kI l 2LF j

i50. ~14!

The coefficientsDj ,k
i ,l will be identified as the viscosity. The

last term represents the contribution of the fast modes and
will not appear in the macroscopic equations; the function
F j
i appears in the ansatz~10! for the nonequilibrium density

f t . Equation ~14! will be understood as an equation in a
suitable Hilbert space andDj ,k

i ,l has a geometric interpretation
as ‘‘the component of the currents in the gradient direc-
tions.’’ Hence the calculation of the transport coefficients
Dj ,k
i ,l involves solving the many-body equation~14! and is no

simpler than the Green-Kubo formula. We shall give varia-
tional formulas bypassing this difficulty. We first describe the
Hilbert space.

Define the spaceG as the space of the local functions
satisfying Emr@g#50, ]Emm@g#/]maum5(r ,0)50, for
a50, . . . ,d, wheremm denotes the product measure~5! with
chemical potentials chosen so thatEmm@ I a(hx)#5ma . This
means that functions inG have null projection on the invari-
ant space of the generatorL. The currentswx, j

i are not in
G , so that we need to subtract the components of the cur-
rents on the space of the hydrodynamic variables. We denote
by sx, j

i the part of the current wx, j
i in G :

s j
i5wj

i2(a>0aj ,a
i I a . In the case of Hamiltonian particle

systems this subtraction procedure has been proposed to
avoid infinite contributions to the Green-Kubo integrals and
the coefficientsaj ,a

i are given by the Zwanzig-Mori projec-
tors ~see, for example@4#,!.

We introduce a scalar product onG , formally given by
the expression

^^ f ,g&&215K (
x

txf ,~Ls!
21gL ,

whereLs5(1/2)(L1L* ) is the symmetric part of the gen-
erator, the average is taken with respect tom r in the infinite
volume andtx denotes spatial translation byx on the lattice.
This expression is formal because the right-hand side may
not even be finite due to the tail of the Green function
(Ls)

21. We are able to control this tail for dimension
d>3 and it indeed defines a scalar product@7#. We obtain the
Hilbert spaceḠ by completingG with the associated norm.

Let x5^@ I a2^I a&#2& denote the ‘‘susceptibility.’’ For
a5(aj

i ),i , j51, . . . ,3, let (Da) j
i5(k,l Dj ,l

i ,k al
k and let

a•b5( i , jaj
i bj

i . D can be characterized by

a•Da5
1

x
inf
hPG

^^s•a1Lh,s•a1Lh&&21 , ~15!

a•D21a5
1

x
inf
hPG

^^¹I •a1Lh,¹I •a1Lh&&21 .

~16!

4488 53R. ESPOSITO, R. MARRA, AND H. T. YAU



These formulas provide upper and lower bounds for the dif-
fusion coefficients. Variational formulation for the diffusiv-
ity is common in homogenization theory. In particle systems
context, it was first introduced by@5# for reversible systems.
Expressions similar to~15! and~16! were previously derived
in @8# for the asymmetric simple exclusion process.

We can show~following the arguments in@7,8#! that ~15!
and~16! are formally equivalent to the Green-Kubo formula

Dj ,k
i ,l 5gd i ,l d j ,k1x21gE

0

`

dt(
x

^s j
i eLttxsk

l &, ~17!

in the sense that, if the time integral in~17! is finite, then the
expression~17! of the diffusion coefficient coincides with
~15! and~16!. The first term in~17! is the viscosity due to the
symmetric simple exclusion (g is the jump rate of the sym-
metric part!; the second one is the so-called dynamical part
of the viscosity. Similar Green-Kubo formulas for ‘‘deter-
ministic’’ cellular automata have been heuristically obtained
using the fluctuation-dissipation approach@11#.

The formulas~15! and ~16! give finite transport coeffi-
cients and provide an efficient way to approximate them
from above and below. The Green function (Ls)

21 appear-
ing in the definition of ^^ &&21 can be eliminated using

^u,S21u&5supv2^u,v&2^v,Sv&, true for any positive sym-
metric operatorS. The symmetry properties of the model and
previous representation formulas show thatD has the form

Dj ,k
i ,l 5d j ,kd i ,l @D11D2d i , j #1D3d i , jd l ,k1D4d j ,l d i ,k

and thatD.g II in matrix sense; in other words, the ‘‘dy-
namical part’’ of the viscosity is strictly positive. The bulk
viscosity z5D31D4 does not appear in the limiting equa-
tion because divu50. The effective diffusivity is the shear
viscosity due toD1 and an anisotropic termD2 . We do not
know if the anisotropic termD2 is zero. Similar anisotropy
appeared in the deterministic cellular automaton FCHC@11#,
introduced to obtain an isotropic nonlinear transport term.

Our method is general enough to work also for different
models, e.g., different lattice geometry or thermal stochastic
cellular automata, provided the local ergodic property holds.
It also provide a rigorous derivation for the law of fluctua-
tions in equilibrium and hence proves a fluctuation-
dissipation relation. We will report on this in a future paper.
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