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Navier-Stokes equations for stochastic lattice gases
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We discuss the diffusive limit of a class of stochastic lattice gases on the cubic [&tidéthe initial
conditions correspond to a local equilibrium with small deviations from a spatially constant profile, we prove
the law of large numbers for the rescaled empirical velocity field. The limiting field satisfies the Navier-Stokes
equation and the viscosity is characterized by variational formulas, formally equivalent to the Green-Kubo
formula.
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A major open problem in nonequilibrium statistical phys- possible velocities andl the numbers of elements iAW",
ics is a derivation of hydrodynamical equations, such as thssume that”” is invariant under reflections and permuta-
Euler or the Navier-Stokes equations, from the microscopigions of the coordinate axes. Assume for simplicity that all
Hamiltonian dynamics. Formally the Euler equations can beyelocities have a fixed modulus, say, The simplest choice
understood with the simple local equilibrium assumpfibh  is to take the velocities along the coordinate directions,
A proof can indeed be achieved by adding some noise to theamely 7'= &. We will refer to that case as model I. Since
Newtonian dynamic$2], helping to establish the local equi- this model does not provide the correct isotropy property for
librium. For longer time scale, such as the diffusive scale, ithe nonlinear term in the Navier-Stokes equation, we intro-
is necessary to compute the transport coefficients which detuce also a more complex modehodel Il) by choosing as
pend on the first order corrections to the local equilibrium.7” the set of the vectors with two componentsl and a
The corrections can be determined by formal expansions, asomponent+ w, to be fixed later to get the right hydrody-
in [3,4]. Unlike the Euler equations, even with the addition namical equations. In model Il we hate= 24.
of noise to the Newtonian dynamics, a rigorous treatment of On each site of the lattice at most one particle for each
this formal expansion for general Hamiltonian systems isyelocity is allowed, so that there are at mobt particles per
beyond the present mathematical technique. A major diffisite (exclusion rule only between particles with the same
culty is the lack of control on the relaxation rate to equilib- velocity). A configuration of particles on the lattice is de-
rium for general Hamiltonian systems, a problem muchpoted by n={n..xe A} where n,={7(x,v),ve??} and
harder than proving local equilibrium assumption. Estimate%(x,v)zo,lxezd,v e 7" is the occupation number of par-
of this kind are essential for a derivation of the Navier-ticles atx with velocity v. The dynamics consists of the
Stokes equations. following two parts.

The only systems that we have sufficient estimates for are (i) The free motionof the particles with velocity is
the lattice gas models. In this paper we present a rigorougodeled by a simple exclusion procéSEP with drift v. In
derivation of the incompressible Navier-Stokes equation fother words, particles with velocity jump at(independent
stochastic particle systems on the lattice. The transport coefyponential times from a site to a neighboring sitex+ e,
ficients, as a byproduct, are characterized via variational fora ¢ = with intensity p(x,x+e,v) provided that there is no
mulas, following the approach pioneered [} and devel-  particle with velocity at x+e. The intensity is chosen so
oped by, among othef§—9]. These variational formulas are ha; the drift=,. ,ep(0,e,v)=v. This is the way we associ-
formally equivalent to the Green-Kubo formula. But unlike ate 4 notion of velocity to particles on the lattice and one can
the Green-Kubo formula, the variational formulas are anagpiain any velocityy by choosing the jump rate correctly
lytically more tractable and they can be used for numericakyen if the underlying lattice is the standard square lattice.
approximations of the transport coefficients. We remark thajye choosep(x,y,v)=[y+(y—x)-v/2], wherey is a con-
the convergence of the Green-Kubo integrals is always veryint large enough so that the jump rates are non-negative.

difficult to obtain while the transport coefficients are auto-ope can characterize this dynamics formally by the generator
matically finite by the variational formulation.

We now introduce the models. Lét, e Z¢ be the cubic

sublattice{—L, ... ,L}% with periodic boundary conditions. Aree

We setL=¢"1. Lete;, i=1,... d be the unit vectors in the =z f(”)zvgz,. dz - n(xv)[1-n(x+eu)]
positive coordinate directions and={e=*g; for some xeriess

i=1,...d}. Let 7 be a finite subset dk“ representing the Xpx,x+ev)[f(7** &) —f(n)], Q)
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where 7*Y? is the configuration obtained frony by ex- J .
changing the occupation numbers of particles with velocity EfFS ST (6)
v atx andy.

_ (i) The_ \_/elocity of t_h_e particles changes by means oftne factore ~2
binary collisions. Bycollisionswe mean all the quadruples
o={g=(v,w,v" W) e 7*v+w=v'+w'} conserving the
total momentum; here,w are the incoming velocities and
v',w’ the outgoing velocities. These binary collisions occur
at a sitey at independent exponential times, provided the ,/,Ozzslex;{g
exclusion rule is not violated. Since the moduli of velocities
are fixed, the energy coincides with the mass in our setup o ] )
and collisions conserve energy as well. The generator i¥ith Aj smooth periodic functions. The corresponding den-
given by sity is (lo(7)y,=NO+0O(s?), where 6=e'/(1+e")

=(7;X>Mr is a constant. The mean velocity field is

S ()= E 2 cy.q- D Y—f(p], @ u'o=(li(17X)>%ocs>\i . This special choice corresponds to as-
yezd 9l sume a Mach number of order namely we are considering
the incompressible regimesee[10] and[3] for more discus-
where C(y,q-7)=1 if #n(y,v)=7(y,w)=1 and sions on this point
n(y,v')=n(y,w')=0, andC(y,q- »)=0 otherwise. Note It is possible to obtain the Navier-Stokes equations by a
that C(y,q- ») =0 when in the configuratiomy there is no  formal calculation assuming suitable approximationsffor
particle with velocityv orw aty or there is already a particle Introduce theempirical velocity fields
with velocity v’ or w’' aty. The configuration;¥9 is con-
structed by settingnY:9(y,v)=%""9(y,w)=0, »¥9(y,v’
=ny'q(y,w’y)=1, ar?gny%z,ﬁ) =7777(gu) )if z;tynor(l):é q). vi(z,)=¢" leEA 8(z—ex)1;(n,(1)), (8)
Note that the only possible collisions in model | are those :
q=(v,w,v’,w’) such that v+w=0 and v'+w'=0  fori=1,... dandzthe macroscopic coordinates, which are
(head-on collisions o _ expected to approximate the velocity profile fersmall,
The generator of the full dynamics is defined by namely »¥(z,t)~u;(zt), ase—0. They satisfy the follow-
ing local conservation laws:

is due to the diffusive time scaling ard* is
the formal adjoint of % in L?(u,). We consider the initial
data,f;—,, given by thelocal equilibrium statey,

d
Emwmm @)

XeAL 1=

= sreef 4+ sof, 3
d
There ared+1 conserved quantities for this dynamics, %vf(z,t)z -> az_w}(z,t). 9)
=1 7

namely, the total mass and the total momentum. Define the

local mass and momentum by , ,

Here W']-(Z,'[)=8d_1EXEAL5(Z—8X)W;(’j . The currents
W'X'j , ,j=1,...d, are given explicity by [with

IO(”]X):UE%, 77(X'U)a |i(77x):U§7/,(U'ei)”’](xav): VJg(X)Eg(X+eJ)_g(X)]

4
fori=1,...d. The product Gibbs measure Wlx,jzvgy/. (&-v)wy,j(v)
1 d
pen=5— 11 exprig(n)+ 2 nili(n)}, (5 =yVili+ 2 (eiv)(gv)by,(v),
" ZL,r,n xeA| i=1 ve7

is invariant for%. It is parametrized by the “chemical po-

tentials” r,n, reR and n a d-dimensional vector

(nq,...,ng), namely the conjugate variables to the mass and

momentum. In6) the partition function Z , , is the normal-  Strictly speaking, there is a martingale term on the right-

ization factor. Whem=0, we denote the measure py and  hand side 0f9), vanishing in the limit discussed here.

the corresponding average by. We shall say that a model To the first approximation, one can assume that the non-

has the local ergodic property if and only if all the invariant equilibrium densityf, is a local equilibrium state similar to

measures in a finite cube are of the fo(B). The specific (7). This is not sufficient to obtain the Navier-Stokes equa-

form of 7" is needed only in the proof of the local ergodic tion. The correct assumption is that the dendifycan be

property. The rest of our method is valid under quite generahpproximatedup to ordere?) by the density

conditions. Like general Hamiltonian systems, our dynamics

is not reversible with respect to the measu® i.e., the d

detailed balance condition is not satisfied. ‘I’tzztlexr{e > 2 hilex,Hli(x)
Let f, be the density with respect jo, of the process on xedyi=1

the diffusive time scale. Therf, satisfies the forward

(Fokker-Planck equation +¢&?

1
bX,j(U): 77(X+e] 10)7]()(10)_ E [77(X+e] ,U)+ U(X,U)]-

. (10
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where ®(7)= EXEALE i9iNi Fi for some local function The main point in the proof is to find the functioﬁé,

F|. The correct choice d#' WI|| be discussed later on and is We use the approach §§—7]. The strategy is to decompose
the key step of the rlgorous derivation. Suffice to say thathe currentsy; into the sum of a gradient term and a term of
F'J determines the fluctuations and they appear only in théhe form. /g, i.e.,
transport coefficient. Note that because of dhderm W, is
not a product measure.

If we average Eq(9) versusW¥, we have the Navier-
Stokes equations below in the limit—0:

w}—kE/ D'« Vil ,— ZFj=0. (14)

The coeff|C|entsD' will be identified as the viscosity. The

divu=0, (1)  last term represents the contribution of the fast modes and
will not appear in the macroscopic equations; the function
9 h( d F; appears in the ansa(z0) for the nonequilibrium density
u Bd, uj +C2 u;d, Ui f;. Equation(14) will be understood as an equation in a

AL(0) suitable Hilbert space artﬂij’,ﬁ has a geometric interpretation

s “the component of the currents in the gradient direc-
i/ tions.” Hence the calculation of the transport coefficients
- ﬂzipﬂ/’zkzl Di,k‘?Z;‘?Zk“/' D}:Q involves solving the many-body equati@t¥) and is no
simpler than the Green-Kubo formula. We shall give varia-
tional formulas bypassing this difficulty. We first describe the
Hilbert space.

12
d

whereu;=At(#) and the constants are defined as

t(6) Define the spaces” as the space of the local functions
t(6)=6(1-6), h(0)=—5-[1-61(0)], satisfying E*[g]=0, JE*mg)/dm,|m=(,0=0, for

a=0,...d, whereu,, denotes the product measyf with
chemical potentials chosen so tH&at[ | ,(#%,)]=m,. This

means that functions i have null projection on the invari-
A=3 ol B=3 [i-ahil, c=23 vii o

= = ant space of the generatof. The currentsw, xj arenotin
&, so that we need to subtract the components of the cur-
We have. for model IA=2. B=2. C=0. and for model I|.  'ents on the space of the hydrodynamic variables. We denote

A=8(2+w2), B=w'—6w’—1, C=16(1+2w?). The by a'xj the part of the currentw,; in
anisotropic term,d, u?, disappears by choosing as the ~ j=Wj—Z.=08] |+ In the case of Hamiltonian particle
positive root of the equatioB=w*— 6w2—1=0 so that systems this subtraction procedure has been proposed to
gvmd infinite contributions to the Green-Kubo integrals and

the coefficientsal . are given by the Zwanzig-Mori projec-
tors (see, for exampl§4])

We introduce a scalar product ¢, formally given by
the expression

equation. This fixes the consta@t The correctionsb to the
local equilibrium determine the viscosity matrD(}:ﬁ. We
summarize the main result proved[i@i.

TheoremlLetd=3 and7"as in model | or model Il. Then
there is a bounded positive matiix such that the following
holds. Suppose the incompressible Navier-Stokes equations <<f,g>>1:<2 Txf,(%vs)—lg>,

(1) and (12) have a smooth solutiop(x,t),u(x,t) for t X

e[0,T] with initial value ug. Then the empirical field®

converges weakly in probability to ase—0. Furthermore, Where Z=(1/2)(4+ #*) is the symmetric part of the gen-

the ansatz10) holds in the sense that the specific relativeerator, the average is taken with respecjitoin the infinite

entropys(f,|¥,) satisfies volume andr, denotes spatial translation byon the lattice.
This expression is formal because the right-hand side may
not even be finite due to the tail of the Green function

S(ft|‘1’t)58df fdnio(fo/Wodu,=0(s%), (13  (~) 1 We are able to control this tail for dimension

d=3 and it indeed defines a scalar produdt We obtain the

provided that the chemical potential is chosen to give thelilbert spaces” by cozrnplet|ng<§ with the associated norm.

correct velocity andF} approximate solutions afL4) below. Let x= <[| _<|a>] ) denote the sulscepublhty For
This is, to our knowledge the only example of rigorous a=(a).i,j=1,...,3, let Da)=3, Djfal and let

derivation of the Navier-Stokes equations from a many-body- 0= EI Ja]b D can be characterized by

system. Our result actually holds in dimensions strictly big-

ger than 2. In fact, note that the rescaled velocity fieflds

1
the local average of velocity blown up by a factorl. Since a-Da=— inf ((c-a+ “h,c-at.zh))_,, (19

X ey
the typical fluctuations of the sum if8) are of order "
e~ 92 it is reasonable to expect a law of large numbers for 1
v® only for d>2. In dimension 2, one expects logarithmic a-D ta== inf ((VI-a+ %h,Vl-a+ Zh))_;.
corrections to the simple diffusive scaling due to the long X hey

time tails[1,11]. (16)
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These formulas provide upper and lower bounds for the dif(u,S‘1u>=su92(u,v)—<v,Su), true for any positive sym-
fusion coefficients. Variational formulation for the diffusiv- metric operato. The symmetry properties of the model and
ity is common in homogenization theory. In particle systemsprevious representation formulas show tBahas the form
context, it was first introduced Hyp] for reversible systems. i g
Expressions similar t615) and(16) were previously derived Dik= 60, /[D11 D26 j]1+ D36 j6, kt D4dj, 6k
in [8] for the asymmetric simple exclusion process.

We can showfollowing the arguments ifi7,8]) that(15)
and(16) are formally equivalent to the Green-Kubo formula

and thatD >y Il in matrix sense; in other words, the “dy-
namical part” of the viscosity is strictly positive. The bulk
viscosity {=D3+ D, does not appear in the limiting equa-
‘ % ' , tion because div=0. The effective diffusivity is the shear
M= 0+ X‘lyf dt> (ole”'r,o), (17)  viscosity due toD, and an anisotropic ter,. We do not

0 x know if the anisotropic ternD, is zero. Similar anisotropy
appeared in the deterministic cellular automaton FGHQ,
introduced to obtain an isotropic nonlinear transport term.

Our method is general enough to work also for different

in the sense that, if the time integral (f7) is finite, then the
expression(17) of the diffusion coefficient coincides with

(15) and(16). The first term in(17) is the viscosity due to the models, e.g., different lattice geometry or thermal stochastic

f%/g?rriZEt:l?)_SIt?glgei)éﬂgsé?]rg(i'sst:]hee Sjgfggnr:‘ée dOL?n?izlm_arcellular automata, provided the local ergodic property holds.
park y P Ht also provide a rigorous derivation for the law of fluctua-

of the viscosity. Similar Green-Kubo formulas for “deter- tions in eauilibium and hence broves a fluctuation-
ministic” cellular automata have been heuristically obtainedd.ss. ation ?elat'on We will report onpth's in a future paper
using the fluctuation-dissipation approddt]. ISsipal 1on. wil rep IS uture paper.
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